Indexed Cartesian Product

An indexed cartesian product in a Category 𝒞 𝒞 \mathcal{C} is an infinitary version of a Cartesian Product.

Explicitly, an I 𝐼 I -indexed cartesian product of a family of objects X i subscript 𝑋 𝑖 X_{i} is an object ( i : I ) X i subscript product : 𝑖 𝐼 subscript 𝑋 𝑖 \prod_{(i:I)}X_{i} , along with projections maps π i : ( i : I ) X i X i : subscript 𝜋 𝑖 subscript product : 𝑖 𝐼 subscript 𝑋 𝑖 subscript 𝑋 𝑖 \pi_{i}:\prod_{(i:I)}X_{i}\to X_{i} that satisfy the following universal property:

Properties

Global Defintion

A category has all I 𝐼 I -indexed products whenever the functor Δ : 𝒞 𝒞 I : Δ 𝒞 superscript 𝒞 𝐼 \Delta:\mathcal{C}\to\mathcal{C}^{I} that sends an object X 𝑋 X to the constant family i X maps-to 𝑖 𝑋 i\mapsto X has a Right Adjoint.