Joint Cartesian Family

Let \mathcal{E}\rightarrowtriangle\mathcal{B} be a Displayed Category, and u i : A B i : subscript 𝑢 𝑖 𝐴 subscript 𝐵 𝑖 u_{i}:{{A}\to{B_{i}}} be a Source in \mathcal{B} . A family of morphisms f i : X u i Y i : subscript 𝑓 𝑖 subscript subscript 𝑢 𝑖 𝑋 subscript 𝑌 𝑖 f_{i}:{{X}\to_{u_{i}}{Y_{i}}} is jointly cartesian if for every other v : C B : 𝑣 𝐶 𝐵 v:{{C}\to{B}} and h i : Z u i v Y i : subscript 𝑖 subscript subscript 𝑢 𝑖 𝑣 𝑍 subscript 𝑌 𝑖 h_{i}:{{Z}\to_{u_{i}\circ v}{Y_{i}}} , there exists a unique v , h i : Z v X : 𝑣 subscript 𝑖 subscript 𝑣 𝑍 𝑋 \langle v,h_{i}\rangle:{{Z}\to_{v}{X}} such that f i v , h i = h i subscript 𝑓 𝑖 𝑣 subscript 𝑖 subscript 𝑖 f_{i}\circ\langle v,h_{i}\rangle=h_{i} for every i : I : 𝑖 𝐼 i:I .

Examples

Properties

References