Cooperator in a Unital Category
Let
π
π
\mathcal{C}
be a Unital
Category , and
f
:
(
X
,
Z
)
:
π
π
π
f:{{}(X,Z)}
,
g
:
(
Y
,
Z
)
:
π
π
π
g:{{}(Y,Z)}
be a pair of morphisms with common codomain. A
cooperator of the pair
(
f
,
g
)
π
π
(f,g)
is a map
Ο
:
X
Γ
Y
β
Z
:
π
β
π
π
π
\varphi:X\times Y\to Z
that makes the following diagram commute:
X π {X} X Γ Y π π {{X\times Y}} Y π {Y} Z π {Z} β¨ m a t h r m i d i f x . . β l s e i , 0 β© \scriptstyle{\langle mathrm{id}{ifx..lse\par i},0\rangle} f π \scriptstyle{f} Ο π \scriptstyle{\varphi} β¨ 0 , m a t h r m i d i f x . . β l s e i β© \scriptstyle{\langle 0,mathrm{id}{ifx..lse\par i}\rangle} g π \scriptstyle{g}
Note that
Ο
π
\varphi
must be unique, as
β¨
m
a
t
h
r
m
i
d
i
f
x
.
.
β
l
s
e
i
,
0
β©
\langle mathrm{id}{ifx..lse\par i},0\rangle
and
β¨
0
,
m
a
t
h
r
m
i
d
i
f
x
.
.
β
l
s
e
i
β©
\langle 0,mathrm{id}{ifx..lse\par i}\rangle
must be Strongly
Epimorphic Family .
Another way of viewing this condition is that
(
f
,
g
)
π
π
(f,g)
have a cooperator when
X
Γ
Y
π
π
X\times Y
acts like a Binary
Biproduct with respect to
f
π
f
and
g
π
g
.
Note that we can extend this to a Sink
f
i
:
X
i
β
Y
:
subscript
π
π
β
subscript
π
π
π
f_{i}:X_{i}\to Y
if
π
π
\mathcal{C}
has Indexed
Cartesian Products ; this is akin to asking that
β
i
:
I
X
i
subscript
product
:
π
πΌ
subscript
π
π
\prod_{i:I}X_{i}
act like an Indexed
Biproduct . In the case of the empty family, this is akin to
asking that the Terminal
Object be a Zero Object , which
is already the case in a Unital
Category .
Intuition
In the Category of
Groups , we can unfold the cooperator condition to get that
Ο β’ ( x , 0 ) = f β’ ( x ) π π₯ 0 π π₯ \varphi(x,0)=f(x)
Ο β’ ( 0 , y ) = g β’ ( y ) π 0 π¦ π π¦ \varphi(0,y)=g(y)
In fact, we can compute what the cooperator ought to be:
Ο β’ ( x , y ) π π₯ π¦ \displaystyle\varphi(x,y)
= Ο β’ ( x + 0 , 0 + y ) absent π π₯ 0 0 π¦ \displaystyle=\varphi(x+0,0+y)
(left and right identity)
= Ο β’ ( ( x , 0 ) + ( 0 , y ) ) absent π π₯ 0 0 π¦ \displaystyle=\varphi((x,0)+(0,y))
(defn of multiplication in product group)
= Ο β’ ( x , 0 ) + Ο β’ ( 0 , y ) absent π π₯ 0 π 0 π¦ \displaystyle=\varphi(x,0)+\varphi(0,y)
(Ο π \varphi is a group homomorphism)
= f β’ ( x ) + g β’ ( y ) absent π π₯ π π¦ \displaystyle=f(x)+g(y)
(Ο π \varphi is a cooperator)
However, we can run the same argument with
Ο
β’
(
0
+
x
,
y
+
0
)
π
0
π₯
π¦
0
\varphi(0+x,y+0)
to get that
Ο
β’
(
x
,
y
)
=
g
β’
(
y
)
+
f
β’
(
x
)
π
π₯
π¦
π
π¦
π
π₯
\varphi(x,y)=g(y)+f(x)
. In other words, the cooperator of
f
π
f
and
g
π
g
only exists if they commute.
Moreover, suppose let
f
,
g
:
G
β
H
:
π
π
β
πΊ
π»
f,g:G\to H
be a parallel pair of group homomorphisms. If the cooperator
Ο
π
\varphi
of
(
f
,
g
)
π
π
(f,g)
exists, then the sum
f
+
g
π
π
f+g
is equal to
Ο
β
Ξ΄
G
:
G
β
H
:
π
subscript
πΏ
πΊ
β
πΊ
π»
\varphi\circ\delta_{G}:G\to H
: both of these are group homomorphisms, so the sum must be a
group homomorphism as well!
References