Restriction of Scalars

Let M 𝑀 M be an ( R , S ) 𝑅 𝑆 (R,S) Semiring Bimodule, f : A R , g : B S : 𝑓 𝐴 𝑅 𝑔 : 𝐵 𝑆 f:A\to R,g:B\to S be a pair of Semiring Homomorphisms, as in the following diagram:

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}M𝑀\scriptstyle{M}divides{\shortmid}

The restriction of scalars of M 𝑀 M along ( f , g ) 𝑓 𝑔 (f,g) is the ( A , B ) 𝐴 𝐵 (A,B) Semiring Bimodule f M g superscript 𝑓 𝑀 superscript 𝑔 f^{*}Mg^{*} formed whose underlying Commutative Monoid is M 𝑀 M , with the left action λ : A × M M : 𝜆 𝐴 𝑀 𝑀 \lambda:A\times M\to M given by λ ( a , m ) = f ( a ) m 𝜆 𝑎 𝑚 𝑓 𝑎 𝑚 \lambda(a,m)=f(a)\cdot m and the right action ρ : M × B M : 𝜌 𝑀 𝐵 𝑀 \rho:M\times B\to M given by ρ ( m , b ) = m g ( b ) 𝜌 𝑚 𝑏 𝑚 𝑔 𝑏 \rho(m,b)=m\cdot g(b) .

Moreover, the identity map m a t h r m i d i f x . . l s e i : M M mathrm{id}{ifx..lse\par i}:M\to M is definitionally a ( f , g ) 𝑓 𝑔 (f,g) Semilinear Map f M g M superscript 𝑓 𝑀 superscript 𝑔 𝑀 f^{*}Mg^{*}\to M as m a t h r m i d i f x . . l s e i ( a x b ) mathrm{id}{ifx..lse\par i}(a\cdot x\cdot b) is definitionally equal to f ( a ) m a t h r m i d i f x . . l s e i ( x ) g ( b ) f(a)\cdot mathrm{id}{ifx..lse\par i}(x)\cdot g(b) . This fills in the missing portion of our square:

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}fMgsuperscript𝑓𝑀superscript𝑔\scriptstyle{f^{*}Mg^{*}}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}M𝑀\scriptstyle{M}divides{\shortmid}

Moreover, this is the universal such filler; for any other square

X𝑋{X}Y𝑌{Y}A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}N𝑁\scriptstyle{N}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}M𝑀\scriptstyle{M}divides{\shortmid}ψ𝜓\scriptstyle{\psi}

there exists a unique factorisation of ψ 𝜓 \psi through our square

X𝑋{X}Y𝑌{Y}A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}N𝑁\scriptstyle{N}divides{\shortmid}fMgsuperscript𝑓𝑀superscript𝑔\scriptstyle{f^{*}Mg^{*}}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}M𝑀\scriptstyle{M}divides{\shortmid}!\scriptstyle{\exists!}

Again, this holds essentially by definition, and the factorization of ψ 𝜓 \psi is just ψ 𝜓 \psi itself!

In much more concise terms, the restriction of scalars is the Cartesian Lift of M 𝑀 M along ( f , g ) 𝑓 𝑔 (f,g) in the Double Category of Bimodules.