Restriction of Scalars
Let
M
𝑀
M
be an
(
R
,
S
)
𝑅
𝑆
(R,S)
Semiring
Bimodule ,
f
:
A
→
R
,
g
:
B
→
S
:
𝑓
→
𝐴
𝑅
𝑔
:
→
𝐵
𝑆
f:A\to R,g:B\to S
be a pair of Semiring
Homomorphisms , as in the following diagram:
A 𝐴 {A} B 𝐵 {B} R 𝑅 {R} S 𝑆 {S} f 𝑓 \scriptstyle{f} g 𝑔 \scriptstyle{g} M 𝑀 \scriptstyle{M} ∣ divides {\shortmid}
The restriction of scalars of
M
𝑀
M
along
(
f
,
g
)
𝑓
𝑔
(f,g)
is the
(
A
,
B
)
𝐴
𝐵
(A,B)
Semiring
Bimodule
f
∗
M
g
∗
superscript
𝑓
𝑀
superscript
𝑔
f^{*}Mg^{*}
formed whose underlying Commutative
Monoid is
M
𝑀
M
, with the left action
λ
:
A
×
M
→
M
:
𝜆
→
𝐴
𝑀
𝑀
\lambda:A\times M\to M
given by
λ
(
a
,
m
)
=
f
(
a
)
⋅
m
𝜆
𝑎
𝑚
⋅
𝑓
𝑎
𝑚
\lambda(a,m)=f(a)\cdot m
and the right action
ρ
:
M
×
B
→
M
:
𝜌
→
𝑀
𝐵
𝑀
\rho:M\times B\to M
given by
ρ
(
m
,
b
)
=
m
⋅
g
(
b
)
𝜌
𝑚
𝑏
⋅
𝑚
𝑔
𝑏
\rho(m,b)=m\cdot g(b)
.
Moreover, the identity map
m
a
t
h
r
m
i
d
i
f
x
.
.
⋄
l
s
e
i
:
M
→
M
mathrm{id}{ifx..lse\par i}:M\to M
is definitionally a
(
f
,
g
)
𝑓
𝑔
(f,g)
Semilinear
Map
f
∗
M
g
∗
→
M
→
superscript
𝑓
𝑀
superscript
𝑔
𝑀
f^{*}Mg^{*}\to M
as
m
a
t
h
r
m
i
d
i
f
x
.
.
⋄
l
s
e
i
(
a
⋅
x
⋅
b
)
mathrm{id}{ifx..lse\par i}(a\cdot x\cdot b)
is definitionally equal to
f
(
a
)
⋅
m
a
t
h
r
m
i
d
i
f
x
.
.
⋄
l
s
e
i
(
x
)
⋅
g
(
b
)
f(a)\cdot mathrm{id}{ifx..lse\par i}(x)\cdot g(b)
. This fills in the missing portion of our square:
A 𝐴 {A} B 𝐵 {B} R 𝑅 {R} S 𝑆 {S} f ∗ M g ∗ superscript 𝑓 𝑀 superscript 𝑔 \scriptstyle{f^{*}Mg^{*}} ∣ divides {\shortmid} f 𝑓 \scriptstyle{f} g 𝑔 \scriptstyle{g} M 𝑀 \scriptstyle{M} ∣ divides {\shortmid}
Moreover, this is the universal such filler; for any other
square
X 𝑋 {X} Y 𝑌 {Y} A 𝐴 {A} B 𝐵 {B} R 𝑅 {R} S 𝑆 {S} N 𝑁 \scriptstyle{N} ∣ divides {\shortmid} f 𝑓 \scriptstyle{f} g 𝑔 \scriptstyle{g} M 𝑀 \scriptstyle{M} ∣ divides {\shortmid} ψ 𝜓 \scriptstyle{\psi}
there exists a unique factorisation of
ψ
𝜓
\psi
through our square
X 𝑋 {X} Y 𝑌 {Y} A 𝐴 {A} B 𝐵 {B} R 𝑅 {R} S 𝑆 {S} N 𝑁 \scriptstyle{N} ∣ divides {\shortmid} f ∗ M g ∗ superscript 𝑓 𝑀 superscript 𝑔 \scriptstyle{f^{*}Mg^{*}} ∣ divides {\shortmid} f 𝑓 \scriptstyle{f} g 𝑔 \scriptstyle{g} M 𝑀 \scriptstyle{M} ∣ divides {\shortmid} ∃ ! \scriptstyle{\exists!}
Again, this holds essentially by definition, and the
factorization of
ψ
𝜓
\psi
is just
ψ
𝜓
\psi
itself!
In much more concise terms, the restriction of scalars is the Cartesian
Lift of
M
𝑀
M
along
(
f
,
g
)
𝑓
𝑔
(f,g)
in the Double
Category of Bimodules .