Extension of Scalars

Let M 𝑀 M be a A , B 𝐴 𝐵 A,B Semiring Bimodule, f : A R : 𝑓 𝐴 𝑅 f:A\to R , g : B S : 𝑔 𝐵 𝑆 g:B\to S be a pair of Semiring Homomorphisms, as in the following diagram:

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}M𝑀\scriptstyle{M}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}

The extension of scalars of M 𝑀 M along f , g 𝑓 𝑔 f,g is the ( R , S ) 𝑅 𝑆 (R,S) Semiring Bimodule f ! M g ! subscript 𝑓 𝑀 subscript 𝑔 f_{!}Mg_{!} formed by taking the Tensor Product

mathrmidifx..lseiRfAMBgSmathrmidifx..lsei\par mathrm{id}{ifx..lse\par i}^{*}Rf^{*}\otimes_{A}M\otimes_{B}g^{*}Smathrm{% id}{ifx..lse\par i}^{*}

where

Moreover, there is an ( f , g ) 𝑓 𝑔 (f,g) Semilinear Map φ : M f ! M g ! : 𝜑 𝑀 subscript 𝑓 𝑀 subscript 𝑔 \varphi:M\to f_{!}Mg_{!} defined to be φ ( x ) = ( 1 , x , 1 ) 𝜑 𝑥 1 𝑥 1 \varphi(x)=(1,x,1) ; this is clearly a Monoid Homomorphism, as ( 1 , x + y , 1 ) = ( 1 , x , 1 ) + ( 1 , y , 1 ) 1 𝑥 𝑦 1 1 𝑥 1 1 𝑦 1 (1,x+y,1)=(1,x,1)+(1,y,1) in the tensor product of modules. Finally, we have

(1,axb,1)1𝑎𝑥𝑏1\displaystyle(1,a\cdot x\cdot b,1) =(1a,x,b1)absent1𝑎𝑥𝑏1\displaystyle=(1\cdot a,x,b\cdot 1) (defn. of tensor product)
=(1f(a),x,g(b)1)absent1𝑓𝑎𝑥𝑔𝑏1\displaystyle=(1f(a),x,g(b)1) (by defn.)
=(f(a)1,x,1g(b))absent𝑓𝑎1𝑥1𝑔𝑏\displaystyle=(f(a)1,x,1g(b)) (left/right identities)
=f(a)(1,x,1)g(b)absent𝑓𝑎1𝑥1𝑔𝑏\displaystyle=f(a)\cdot(1,x,1)\cdot g(b) (by defn.)

which shows that φ 𝜑 \varphi is indeed semilinear. This fills in the missing portion of our square:

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}M𝑀\scriptstyle{M}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}f!Mg!subscript𝑓𝑀subscript𝑔\scriptstyle{\definecolor{.}{rgb}{% 0.83921568627451,0.36078431372549,0.36078431372549}\color[rgb]{% 0.83921568627451,0.36078431372549,0.36078431372549}\definecolor[named]{% pgfstrokecolor}{rgb}{0.83921568627451,0.36078431372549,0.36078431372549}f_{!}% Mg_{!}}divides{\definecolor{.}{rgb}{0.83921568627451,0.36078431372549,0.36078431372549}% \color[rgb]{0.83921568627451,0.36078431372549,0.36078431372549}\definecolor[% named]{pgfstrokecolor}{rgb}{0.83921568627451,0.36078431372549,0.36078431372549% }\shortmid}φ𝜑\scriptstyle{\definecolor{.}{rgb}{% 0.83921568627451,0.36078431372549,0.36078431372549}\color[rgb]{% 0.83921568627451,0.36078431372549,0.36078431372549}\definecolor[named]{% pgfstrokecolor}{rgb}{0.83921568627451,0.36078431372549,0.36078431372549}\varphi}

Moreover, the extension of scalars is the universal such filler; for any other squares

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}X𝑋{X}Y𝑌{Y}M𝑀\scriptstyle{M}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}h\scriptstyle{h}k𝑘\scriptstyle{k}N𝑁\scriptstyle{N}divides{\shortmid}ψ𝜓\scriptstyle{\psi}

there exists a unique factorization of ψ 𝜓 \psi through φ 𝜑 \varphi , as below

A𝐴{A}B𝐵{B}R𝑅{R}S𝑆{S}X𝑋{X}Y𝑌{Y}M𝑀\scriptstyle{M}divides{\shortmid}f𝑓\scriptstyle{f}g𝑔\scriptstyle{g}h\scriptstyle{h}k𝑘\scriptstyle{k}N𝑁\scriptstyle{N}divides{\shortmid}φ𝜑\scriptstyle{\varphi}!\scriptstyle{\exists!}

In much more consise terms, the extension of scalars is the Cocartesian Lift of M 𝑀 M along ( f , g ) 𝑓 𝑔 (f,g) in the Double Category of Bimodules.