Braided Monoidal Category

A braided monoidal category is a Monoidal Category ( 𝒱 , , I ) 𝒱 tensor-product 𝐼 (\mathcal{V},\otimes,I) equipped with a Natural Isomorphism β X , Y : X Y Y X : subscript 𝛽 𝑋 𝑌 tensor-product 𝑋 𝑌 tensor-product 𝑌 𝑋 \beta_{X,Y}:X\otimes Y\to Y\otimes X that satisfies the hexagon identities

X(YZ)tensor-product𝑋tensor-product𝑌𝑍{{X\otimes(Y\otimes Z)}}X(ZY)tensor-product𝑋tensor-product𝑍𝑌{{X\otimes(Z\otimes Y)}}(XY)Ztensor-producttensor-product𝑋𝑌𝑍{{(X\otimes Y)\otimes Z}}(XZ)Ytensor-producttensor-product𝑋𝑍𝑌{{(X\otimes Z)\otimes Y}}Z(XY)tensor-product𝑍tensor-product𝑋𝑌{{Z\otimes(X\otimes Y)}}(ZX)Ytensor-producttensor-product𝑍𝑋𝑌{{(Z\otimes X)\otimes Y}}mathrmidifx..lseiβY,Z\scriptstyle{mathrm{id}{ifx..lse\par i}\otimes\beta_{Y,Z}}αX,Y,Zsubscript𝛼𝑋𝑌𝑍\scriptstyle{\alpha_{X,Y,Z}}αX,Z,Ysubscript𝛼𝑋𝑍𝑌\scriptstyle{\alpha_{X,Z,Y}}βXY,Zsubscript𝛽tensor-product𝑋𝑌𝑍\scriptstyle{\beta_{X\otimes Y,Z}}βX,Zmathrmidifx..lsei\scriptstyle{\beta_{X,Z}\otimes mathrm{id}{ifx..lse\par i}}αZ,X,Ysubscript𝛼𝑍𝑋𝑌\scriptstyle{\alpha_{Z,X,Y}}

(XY)Ztensor-producttensor-product𝑋𝑌𝑍{{(X\otimes Y)\otimes Z}}(YX)Ztensor-producttensor-product𝑌𝑋𝑍{{(Y\otimes X)\otimes Z}}X(YZ)tensor-product𝑋tensor-product𝑌𝑍{{X\otimes(Y\otimes Z)}}Y(XZ)tensor-product𝑌tensor-product𝑋𝑍{{Y\otimes(X\otimes Z)}}(YZ)Xtensor-producttensor-product𝑌𝑍𝑋{{(Y\otimes Z)\otimes X}}Y(ZX)tensor-product𝑌tensor-product𝑍𝑋{{Y\otimes(Z\otimes X)}}βX,Ymathrmidifx..lsei\scriptstyle{\beta_{X,Y}\otimes mathrm{id}{ifx..lse\par i}}αX,Y,Z1subscriptsuperscript𝛼1𝑋𝑌𝑍\scriptstyle{\alpha^{-1}_{X,Y,Z}}αY,X,Z1subscriptsuperscript𝛼1𝑌𝑋𝑍\scriptstyle{\alpha^{-1}_{Y,X,Z}}βX,YZsubscript𝛽𝑋tensor-product𝑌𝑍\scriptstyle{\beta_{X,Y\otimes Z}}mathrmidifx..lseiβX,Y\scriptstyle{mathrm{id}{ifx..lse\par i}\otimes\beta_{X,Y}}αY,Z,X1subscriptsuperscript𝛼1𝑌𝑍𝑋\scriptstyle{\alpha^{-1}_{Y,Z,X}}