Commutative Monoid Object

Let ( 𝒱 , , I ) 𝒱 tensor-product 𝐼 (\mathcal{V},\otimes,I) be a Braided Monoidal Category with braiding β 𝛽 \beta , and ( M , η , μ ) 𝑀 𝜂 𝜇 (M,\eta,\mu) be a Monoid Object in 𝒱 𝒱 \mathcal{V} . M 𝑀 M is a commutative monoid object if μ 𝜇 \mu commutes with the braiding.

MMtensor-product𝑀𝑀{{M\otimes M}}MMtensor-product𝑀𝑀{{M\otimes M}}M𝑀{{M}}βM,Msubscript𝛽𝑀𝑀\scriptstyle{\beta_{M,M}}μ𝜇\scriptstyle{\mu}μ𝜇\scriptstyle{\mu}

In most cases, 𝒱 𝒱 \mathcal{V} is a Symmetric Monoidal Category.

Examples

References