Alternating Map

A Multilinear Map f : M n N : 𝑓 superscript 𝑀 𝑛 𝑁 f:M^{n}\to N is alternating if for all i j 𝑖 𝑗 i\neq j , if x i = x j subscript 𝑥 𝑖 subscript 𝑥 𝑗 x_{i}=x_{j} , then f ( x 1 , , x n ) = 0 𝑓 subscript 𝑥 1 subscript 𝑥 𝑛 0 f(x_{1},\ldots,x_{n})=0 . When specialized to Bilinear Maps, this condition reduces to f ( x , x ) = 0 𝑓 𝑥 𝑥 0 f(x,x)=0 .

Properties