Bilinear Map

Let R , S 𝑅 𝑆 R,S be a pair of Rings, M 𝑀 M be a Left R-Module, N 𝑁 N be a Right S-Module, and T 𝑇 T be an (R,S)-Bimodule. A function f : , : M × N T : 𝑓 : 𝑀 𝑁 𝑇 f:\langle-,-\rangle:M\times N\to T is a bilinear map if it is "separately linear" in each variable:

More concisely, a bilinear map is simply a Linear Map M N T tensor-product 𝑀 𝑁 𝑇 M\otimes N\to T from the Tensor Product of Modules.

Note that none of this requires a group structure, and can be generalized to Semirings and Semiring Bimodules.