Displayed Adjunction in a Displayed Bicategory

Let \mathcal{E}\rightarrowtriangle\mathcal{B} be a Displayed Bicategory, and l r : X Y does-not-prove 𝑙 𝑟 : 𝑋 𝑌 l\dashv r:X\leftrightarrows Y be an Adjunction in \mathcal{B} . A displayed adjunction in \mathcal{E} consists of a pair of displayed 1-cells l : Y l X : superscript 𝑙 subscript 𝑙 superscript 𝑌 superscript 𝑋 l^{\prime}:Y^{\prime}\to_{l}X^{\prime} , r : X r Y : superscript 𝑟 subscript 𝑟 superscript 𝑋 superscript 𝑌 r^{\prime}:X^{\prime}\to_{r}Y^{\prime} , along with displayed 2-cells η : m a t h r m i d i f x . . l s e i η r l \eta^{\prime}:mathrm{id}{ifx..lse\par i}\rightarrow_{\eta}r^{\prime}\circ l^{\prime} , ε : l r ε m a t h r m i d i f x . . l s e i \varepsilon^{\prime}:l^{\prime}\circ r^{\prime}\to_{\varepsilon}mathrm{id}{ifx% ..lse\par i} that satisfy displayed analogs of the zig-zag identities.