Fibred Adjunction

A fibred adjunction over a pair of Adjoint Functors L R : 𝒞 does-not-prove 𝐿 𝑅 : 𝒞 L\dashv R:\mathcal{B}\leftrightarrows\mathcal{C} is a pair of Fibred Functors L : L : superscript 𝐿 subscript 𝐿 L^{\prime}:\mathcal{F}\to_{L}\mathcal{E} , R : R : superscript 𝑅 subscript 𝑅 R^{\prime}:\mathcal{E}\to_{R}\mathcal{F} along with a pair of Displayed Natural Transformations η : Id η R L : superscript 𝜂 subscript 𝜂 Id superscript 𝑅 superscript 𝐿 \eta^{\prime}:\mathrm{Id}\to_{\eta}R^{\prime}\circ L^{\prime} , ε : L R Id : superscript 𝜀 superscript 𝐿 superscript 𝑅 Id \varepsilon^{\prime}:L^{\prime}\circ R^{\prime}\to\mathrm{Id} that satisfy displayed versions of the zig-zag identities

Properties

References