Extranatural Transformation

Let F : A × B op × B D : 𝐹 𝐴 superscript 𝐵 op 𝐵 𝐷 F:A\times B^{\mathrm{op}}\times B\to D , G : A × B op × B D : 𝐺 𝐴 superscript 𝐵 op 𝐵 𝐷 G:A\times B^{\mathrm{op}}\times B\to D be a pair of functors. An extranatural transformation α : F G : 𝛼 𝐹 𝐺 \alpha:F\to G consists of a family of maps α a , b , c : F ( a , b , b ) G ( a , c , c ) : subscript 𝛼 𝑎 𝑏 𝑐 𝐹 𝑎 𝑏 𝑏 𝐺 𝑎 𝑐 𝑐 \alpha_{a,b,c}:F(a,b,b)\to G(a,c,c) that satisfy the following conditions:

F(a,b,b)𝐹𝑎𝑏𝑏{{F(a,b,b)}}G(a,c,c)𝐺𝑎𝑐𝑐{{G(a,c,c)}}F(a,b,b)𝐹superscript𝑎𝑏𝑏{{F(a^{\prime},b,b)}}G(a,c,c)𝐺superscript𝑎𝑐𝑐{{G(a^{\prime},c,c)}}αa,b,csubscript𝛼superscript𝑎𝑏𝑐\scriptstyle{\alpha_{a^{\prime},b,c}}F(f,id,id)𝐹𝑓𝑖𝑑𝑖𝑑\scriptstyle{F(f,id,id)}G(f,id,id)𝐺𝑓𝑖𝑑𝑖𝑑\scriptstyle{G(f,id,id)}αa,b,csubscript𝛼superscript𝑎𝑏𝑐\scriptstyle{\alpha_{a^{\prime},b,c}}

F(a,b,b)𝐹𝑎superscript𝑏𝑏{{F(a,b^{\prime},b)}}F(a,b,b)𝐹𝑎superscript𝑏superscript𝑏{{F(a,b^{\prime},b^{\prime})}}F(a,b,b)𝐹𝑎𝑏𝑏{{F(a,b,b)}}G(a,c,c)𝐺superscript𝑎𝑐𝑐{{G(a^{\prime},c,c)}}F(id,id,g)𝐹𝑖𝑑𝑖𝑑𝑔\scriptstyle{F(id,id,g)}F(id,g,id)𝐹𝑖𝑑𝑔𝑖𝑑\scriptstyle{F(id,g,id)}αa,b,csubscript𝛼𝑎superscript𝑏𝑐\scriptstyle{\alpha_{a,b^{\prime},c}}αa,b,csubscript𝛼𝑎𝑏𝑐\scriptstyle{\alpha_{a,b,c}}

F(a,b,b)𝐹𝑎𝑏𝑏{{F(a,b,b)}}G(a,c,c)𝐺𝑎superscript𝑐superscript𝑐{{G(a,c^{\prime},c^{\prime})}}G(a,c,c)𝐺𝑎𝑐𝑐{{G(a,c,c)}}G(a,c,c)𝐺𝑎𝑐superscript𝑐{{G(a,c,c^{\prime})}}αa,b,csubscript𝛼𝑎𝑏superscript𝑐\scriptstyle{\alpha_{a,b,c^{\prime}}}αa,b,csubscript𝛼𝑎𝑏𝑐\scriptstyle{\alpha_{a,b,c}}G(id,h,id)𝐺𝑖𝑑𝑖𝑑\scriptstyle{G(id,h,id)}G(id,id,h)𝐺𝑖𝑑𝑖𝑑\scriptstyle{G(id,id,h)}