Closed Category

A closed category is like a Closed Monoidal Category, but without the monoidal structure. Rather than axiomatizing the monoidal structure and asking for a right adjoint to A A\otimes- , we instead axiomatize the properties of the Internal Hom directly.

Explicitly, a category V 𝑉 V is closed if it is equipped with the following data:

Such that the following diagrams commute:

I𝐼{I}[Y,Y]𝑌𝑌{{[Y,Y]}}[[X,Y],[X,Y]]𝑋𝑌𝑋𝑌{{[[X,Y],[X,Y]]}}ιYsubscript𝜄𝑌\scriptstyle{\iota_{Y}}ι[X,Y]subscript𝜄𝑋𝑌\scriptstyle{\iota_{[X,Y]}}cX,Y,Ysubscript𝑐𝑋𝑌𝑌\scriptstyle{c_{X,Y,Y}}
[X,Y]𝑋𝑌{{[X,Y]}}[[X,X],[X,Y]]𝑋𝑋𝑋𝑌{{[[X,X],[X,Y]]}}[I,[X,Y]]𝐼𝑋𝑌{{[I,[X,Y]]}}cX,X,Ysubscript𝑐𝑋𝑋𝑌\scriptstyle{c_{X,X,Y}}iX,Ysubscript𝑖𝑋𝑌\scriptstyle{i_{X,Y}}[ιX,id]subscript𝜄𝑋𝑖𝑑\scriptstyle{[\iota_{X},id]}
[U,V]𝑈𝑉{{[U,V]}}[[Y,U],[Y,V]]𝑌𝑈𝑌𝑉{{[[Y,U],[Y,V]]}}[[X,U],[X,V]]𝑋𝑈𝑋𝑉{{[[X,U],[X,V]]}}[[Y,U],[[X,Y],[X,V]]{{[[Y,U],[[X,Y],[X,V]]}}[[[X,Y],[X,U]],[[X,Y],[Y,V]]]𝑋𝑌𝑋𝑈𝑋𝑌𝑌𝑉{{[[[X,Y],[X,U]],[[X,Y],[Y,V]]]}}cY,U,Vsubscript𝑐𝑌𝑈𝑉\scriptstyle{c_{Y,U,V}}cX,U,Vsubscript𝑐𝑋𝑈𝑉\scriptstyle{c_{X,U,V}}[id,cX,Y,V]𝑖𝑑subscript𝑐𝑋𝑌𝑉\scriptstyle{[id,c_{X,Y,V}]}c[X,Y],[X,U],[Y,V]subscript𝑐𝑋𝑌𝑋𝑈𝑌𝑉\scriptstyle{c_{[X,Y],[X,U],[Y,V]}}[cX,Y,U,id]subscript𝑐𝑋𝑌𝑈𝑖𝑑\scriptstyle{[c_{X,Y,U},id]}

Via Display

The original Eilenberg-Kelly definition of a closed category used an underlying set functor U : V Sets : 𝑈 𝑉 Sets U:V\to\mathrm{Sets} with a condition that U [ , = ] = V ( , = ) 𝑈 𝑉 U\circ[-,=]=V(-,=) Can this be done via display instead?