Closed Category
A closed category is like a Closed
Monoidal Category , but without the monoidal structure. Rather
than axiomatizing the monoidal structure and asking for a right
adjoint to
A
⊗
−
A\otimes-
, we instead axiomatize the properties of the Internal Hom
directly.
Explicitly, a category
V
𝑉
V
is closed if it is
equipped with the following data:
A Profunctor
[
−
,
=
]
:
V
op
×
V
→
Sets
:
→
superscript
𝑉
op
𝑉
Sets
[-,=]:V^{\mathrm{op}}\times V\to\mathrm{Sets}
A unit
I
:
V
:
𝐼
𝑉
I:V
A natural isomorphism
i
:
Id
≅
[
I
,
−
]
:
𝑖
Id
𝐼
i:\mathrm{Id}\cong[I,-]
An Extranatural
Transformation
ι
:
I
→
[
X
,
X
]
:
𝜄
→
𝐼
𝑋
𝑋
\iota:I\to[X,X]
, extranatural in
X
𝑋
X
.
An Extranatural
Transformation
c
:
[
Y
,
Z
]
→
[
[
X
,
Y
]
,
[
X
,
Z
]
]
:
𝑐
→
𝑌
𝑍
𝑋
𝑌
𝑋
𝑍
c:[Y,Z]\to[[X,Y],[X,Z]]
, natural in
Y
𝑌
Y
and
Z
𝑍
Z
and extranatural in
X
𝑋
X
.
Such that the following diagrams commute:
I 𝐼 {I} [ Y , Y ] 𝑌 𝑌 {{[Y,Y]}} [ [ X , Y ] , [ X , Y ] ] 𝑋 𝑌 𝑋 𝑌 {{[[X,Y],[X,Y]]}} ι Y subscript 𝜄 𝑌 \scriptstyle{\iota_{Y}} ι [ X , Y ] subscript 𝜄 𝑋 𝑌 \scriptstyle{\iota_{[X,Y]}} c X , Y , Y subscript 𝑐 𝑋 𝑌 𝑌
\scriptstyle{c_{X,Y,Y}}
[ X , Y ] 𝑋 𝑌 {{[X,Y]}} [ [ X , X ] , [ X , Y ] ] 𝑋 𝑋 𝑋 𝑌 {{[[X,X],[X,Y]]}} [ I , [ X , Y ] ] 𝐼 𝑋 𝑌 {{[I,[X,Y]]}} c X , X , Y subscript 𝑐 𝑋 𝑋 𝑌
\scriptstyle{c_{X,X,Y}} i X , Y subscript 𝑖 𝑋 𝑌
\scriptstyle{i_{X,Y}} [ ι X , i d ] subscript 𝜄 𝑋 𝑖 𝑑 \scriptstyle{[\iota_{X},id]}
[ U , V ] 𝑈 𝑉 {{[U,V]}} [ [ Y , U ] , [ Y , V ] ] 𝑌 𝑈 𝑌 𝑉 {{[[Y,U],[Y,V]]}} [ [ X , U ] , [ X , V ] ] 𝑋 𝑈 𝑋 𝑉 {{[[X,U],[X,V]]}} [ [ Y , U ] , [ [ X , Y ] , [ X , V ] ] {{[[Y,U],[[X,Y],[X,V]]}} [ [ [ X , Y ] , [ X , U ] ] , [ [ X , Y ] , [ Y , V ] ] ] 𝑋 𝑌 𝑋 𝑈 𝑋 𝑌 𝑌 𝑉 {{[[[X,Y],[X,U]],[[X,Y],[Y,V]]]}} c Y , U , V subscript 𝑐 𝑌 𝑈 𝑉
\scriptstyle{c_{Y,U,V}} c X , U , V subscript 𝑐 𝑋 𝑈 𝑉
\scriptstyle{c_{X,U,V}} [ i d , c X , Y , V ] 𝑖 𝑑 subscript 𝑐 𝑋 𝑌 𝑉
\scriptstyle{[id,c_{X,Y,V}]} c [ X , Y ] , [ X , U ] , [ Y , V ] subscript 𝑐 𝑋 𝑌 𝑋 𝑈 𝑌 𝑉
\scriptstyle{c_{[X,Y],[X,U],[Y,V]}} [ c X , Y , U , i d ] subscript 𝑐 𝑋 𝑌 𝑈
𝑖 𝑑 \scriptstyle{[c_{X,Y,U},id]}
Externalisation: The map
V
(
X
,
Y
)
→
V
(
I
,
[
X
,
Y
]
)
→
𝑉
𝑋
𝑌
𝑉
𝐼
𝑋
𝑌
V(X,Y)\to V(I,[X,Y])
defined by
f
↦
[
i
d
,
f
]
∘
ι
X
maps-to
𝑓
𝑖
𝑑
𝑓
subscript
𝜄
𝑋
f\mapsto[id,f]\circ\iota_{X}
is an Equivalence .
Via Display
The original Eilenberg-Kelly definition of a closed category used
an underlying set functor
U
:
V
→
Sets
:
𝑈
→
𝑉
Sets
U:V\to\mathrm{Sets}
with a condition that
U
∘
[
−
,
=
]
=
V
(
−
,
=
)
𝑈
𝑉
U\circ[-,=]=V(-,=)
Can this be done via display instead?