Involutive Ring

An involutive ring is a Ring R 𝑅 R equipped with an involutive automorphism ( ) : R op R : superscript superscript 𝑅 op 𝑅 (-)^{\star}:R^{\mathrm{op}}\to R .

Explicitly, this means that we have:

Basic Properties

Note that we can derive 1 = 1 superscript 1 1 1^{\star}=1 via the following chain of reasoning:

1superscript1\displaystyle 1^{\star} =11absentsuperscript11\displaystyle=1^{\star}\cdot 1 (right id)
=1(1)absentsuperscript1superscriptsuperscript1\displaystyle=1^{\star}\cdot(1^{\star})^{\star} (involution)
=(11)absentsuperscript1superscript1\displaystyle=(1\cdot 1^{\star})^{\star} (homomorphism)
=(1)absentsuperscriptsuperscript1\displaystyle=(1^{\star})^{\star} (left id)
=1absent1\displaystyle=1 \displaystyle\square

A similar argument lets us derive that 0 = 0 superscript 0 0 0^{\star}=0 .

We can also deduce that ( x 1 ) = ( x ) 1 superscript superscript 𝑥 1 superscript superscript 𝑥 1 (x^{-1})^{\star}=(x^{\star})^{-1} by the usual argument that group homomorphisms preserve inverses.

Examples