Cayley-Dickson Construction

The Cayley-Dickson construction is a generalization of the construction of the Complex Numbers to an arbitrary Algebra with Involution ( A , , ( ) ) 𝐴 superscript (A,\cdot,(-)^{\dagger}) over a Involutive Ring R 𝑅 R .

We start by fixing some parameter γ : R : 𝛾 𝑅 \gamma:R ; we then proceed to define a multiplication operation on A A direct-sum 𝐴 𝐴 A\oplus A like so:

(a,b)(c,d)=(acγdb,da+bc)𝑎𝑏𝑐𝑑𝑎𝑐𝛾superscript𝑑𝑏𝑑𝑎𝑏superscript𝑐(a,b)(c,d)=(ac-\gamma\cdot d^{\dagger}b,da+bc^{\dagger})

We can also define an involution on A A direct-sum 𝐴 𝐴 A\oplus A :

(a,b)=(a,b)superscript𝑎𝑏superscript𝑎𝑏(a,b)^{\dagger}=(a^{\dagger},-b)