Monad Bimodule
Let
S
:
𝒜
→
𝒜
:
𝑆
→
𝒜
𝒜
S:\mathcal{A}\to\mathcal{A}
,
T
:
ℬ
→
ℬ
:
𝑇
→
ℬ
ℬ
T:\mathcal{B}\to\mathcal{B}
be a pair of Monads . An
S-T-bimodule consists of
such that the following diagrams commute:
T ( T ( F ( X ) ) ) 𝑇 𝑇 𝐹 𝑋 {{T(T(F(X)))}} T ( F ( X ) ) 𝑇 𝐹 𝑋 {{T(F(X))}} T ( F ( X ) ) 𝑇 𝐹 𝑋 {{T(F(X))}} T F ( X ) 𝑇 𝐹 𝑋 {{TF(X)}} T ( λ X ) 𝑇 subscript 𝜆 𝑋 \scriptstyle{T(\lambda_{X})} μ F ( X ) subscript 𝜇 𝐹 𝑋 \scriptstyle{\mu_{F(X)}} λ X subscript 𝜆 𝑋 \scriptstyle{\lambda_{X}} λ X subscript 𝜆 𝑋 \scriptstyle{\lambda_{X}}
F ( X ) 𝐹 𝑋 {{F(X)}} T ( F ( X ) ) 𝑇 𝐹 𝑋 {{T(F(X))}} F ( X ) 𝐹 𝑋 {{F(X)}} η F ( X ) subscript 𝜂 𝐹 𝑋 \scriptstyle{\eta_{F(X)}} m a t h r m i d i f x . . ⋄ l s e i \scriptstyle{mathrm{id}{ifx..lse\par i}} λ X subscript 𝜆 𝑋 \scriptstyle{\lambda_{X}}
F ( S ( S ( X ) ) ) 𝐹 𝑆 𝑆 𝑋 {{F(S(S(X)))}} F ( S ( X ) ) 𝐹 𝑆 𝑋 {{F(S(X))}} F ( S ( X ) ) 𝐹 𝑆 𝑋 {{F(S(X))}} F ( X ) 𝐹 𝑋 {{F(X)}} ρ S ( X ) subscript 𝜌 𝑆 𝑋 \scriptstyle{\rho_{S(X)}} F ( μ X ) 𝐹 subscript 𝜇 𝑋 \scriptstyle{F(\mu_{X})} ρ X subscript 𝜌 𝑋 \scriptstyle{\rho_{X}} ρ X subscript 𝜌 𝑋 \scriptstyle{\rho_{X}}
F ( X ) 𝐹 𝑋 {{F(X)}} F ( S ( X ) ) 𝐹 𝑆 𝑋 {{F(S(X))}} F ( X ) 𝐹 𝑋 {{F(X)}} F ( η X ) 𝐹 subscript 𝜂 𝑋 \scriptstyle{F(\eta_{X})} m a t h r m i d i f x . . ⋄ l s e i \scriptstyle{mathrm{id}{ifx..lse\par i}} ρ X subscript 𝜌 𝑋 \scriptstyle{\rho_{X}}
T ( F ( S ( X ) ) ) 𝑇 𝐹 𝑆 𝑋 {{T(F(S(X)))}} T ( F ( X ) ) 𝑇 𝐹 𝑋 {{T(F(X))}} F ( S ( X ) ) 𝐹 𝑆 𝑋 {{F(S(X))}} F ( X ) 𝐹 𝑋 {{F(X)}} λ S ( X ) subscript 𝜆 𝑆 𝑋 \scriptstyle{\lambda_{S(X)}} T ( ρ X ) 𝑇 subscript 𝜌 𝑋 \scriptstyle{T(\rho_{X})} λ X subscript 𝜆 𝑋 \scriptstyle{\lambda_{X}} ρ X subscript 𝜌 𝑋 \scriptstyle{\rho_{X}}
Properties
Every Monad Algebra
A
:
𝒞
,
α
:
T
(
A
)
→
A
:
𝐴
𝒞
𝛼
:
→
𝑇
𝐴
𝐴
A:\mathcal{C},\alpha:T(A)\to A
is a
(
m
a
t
h
r
m
I
d
i
f
x
.
.
⋄
l
s
e
i
,
T
)
(mathrm{Id}{ifx..lse\par i},T)
-bimodule, where
m
a
t
h
r
m
I
d
i
f
x
.
.
⋄
l
s
e
i
mathrm{Id}{ifx..lse\par i}
is taken as a Monad on the Terminal
Category .
The object
A
:
𝒞
:
𝐴
𝒞
A:\mathcal{C}
is a single-object diagram in
𝒞
𝒞
\mathcal{C}
, so our underlying 1-cell is simply
A
:
1
→
𝒞
:
𝐴
→
1
𝒞
A:1\to\mathcal{C}
. Moreover, the right action is completely trivial, and the
compatibility condition reduces to naturality of
α
𝛼
\alpha
.
Monad bimodules and Ring Bimodules are
both instances of Bimodules
in a Bicategory , so a lot of the theory of Ring Bimodules can be
ported over to monad bimodules.