Monad Bimodule

Let S : 𝒜 𝒜 : 𝑆 𝒜 𝒜 S:\mathcal{A}\to\mathcal{A} , T : : 𝑇 T:\mathcal{B}\to\mathcal{B} be a pair of Monads. An S-T-bimodule consists of

such that the following diagrams commute:

T(T(F(X)))𝑇𝑇𝐹𝑋{{T(T(F(X)))}}T(F(X))𝑇𝐹𝑋{{T(F(X))}}T(F(X))𝑇𝐹𝑋{{T(F(X))}}TF(X)𝑇𝐹𝑋{{TF(X)}}T(λX)𝑇subscript𝜆𝑋\scriptstyle{T(\lambda_{X})}μF(X)subscript𝜇𝐹𝑋\scriptstyle{\mu_{F(X)}}λXsubscript𝜆𝑋\scriptstyle{\lambda_{X}}λXsubscript𝜆𝑋\scriptstyle{\lambda_{X}}

F(X)𝐹𝑋{{F(X)}}T(F(X))𝑇𝐹𝑋{{T(F(X))}}F(X)𝐹𝑋{{F(X)}}ηF(X)subscript𝜂𝐹𝑋\scriptstyle{\eta_{F(X)}}mathrmidifx..lsei\scriptstyle{mathrm{id}{ifx..lse\par i}}λXsubscript𝜆𝑋\scriptstyle{\lambda_{X}}

F(S(S(X)))𝐹𝑆𝑆𝑋{{F(S(S(X)))}}F(S(X))𝐹𝑆𝑋{{F(S(X))}}F(S(X))𝐹𝑆𝑋{{F(S(X))}}F(X)𝐹𝑋{{F(X)}}ρS(X)subscript𝜌𝑆𝑋\scriptstyle{\rho_{S(X)}}F(μX)𝐹subscript𝜇𝑋\scriptstyle{F(\mu_{X})}ρXsubscript𝜌𝑋\scriptstyle{\rho_{X}}ρXsubscript𝜌𝑋\scriptstyle{\rho_{X}}

F(X)𝐹𝑋{{F(X)}}F(S(X))𝐹𝑆𝑋{{F(S(X))}}F(X)𝐹𝑋{{F(X)}}F(ηX)𝐹subscript𝜂𝑋\scriptstyle{F(\eta_{X})}mathrmidifx..lsei\scriptstyle{mathrm{id}{ifx..lse\par i}}ρXsubscript𝜌𝑋\scriptstyle{\rho_{X}}

T(F(S(X)))𝑇𝐹𝑆𝑋{{T(F(S(X)))}}T(F(X))𝑇𝐹𝑋{{T(F(X))}}F(S(X))𝐹𝑆𝑋{{F(S(X))}}F(X)𝐹𝑋{{F(X)}}λS(X)subscript𝜆𝑆𝑋\scriptstyle{\lambda_{S(X)}}T(ρX)𝑇subscript𝜌𝑋\scriptstyle{T(\rho_{X})}λXsubscript𝜆𝑋\scriptstyle{\lambda_{X}}ρXsubscript𝜌𝑋\scriptstyle{\rho_{X}}

Properties