Let 𝒞 , 𝒟 𝒞 𝒟 \mathcal{C},\mathcal{D} be a pair of Categories. The functor category [ 𝒞 , 𝒟 ] 𝒞 𝒟 [\mathcal{C},\mathcal{D}] is the category where
Limits and Colimits in functor categories are computed pointwise.
Explicitly, consider a diagram F : 𝒥 → [ 𝒞 , 𝒟 ] : 𝐹 → 𝒥 𝒞 𝒟 F:\mathcal{J}\to[\mathcal{C},\mathcal{D}] . This diagram has a limit lim ( j : J ) F ( j ) subscript : 𝑗 𝐽 𝐹 𝑗 \lim_{(j:J)}F(j) if and only if we have a limit of the diagram F : 𝒥 × 𝒞 → 𝒟 : 𝐹 → 𝒥 𝒞 𝒟 F:\mathcal{J}\times\mathcal{C}\to\mathcal{D} in 𝒟 𝒟 \mathcal{D} , which means that we can compute ( lim ( j : J ) F ( j ) ) ( X ) subscript : 𝑗 𝐽 𝐹 𝑗 𝑋 (\lim_{(j:J)}F(j))(X) as lim ( j : J ) F ( j ) ( X ) subscript : 𝑗 𝐽 𝐹 𝑗 𝑋 \lim_{(j:J)}F(j)(X) .