Combinatorial Class

A combinatorial class is a Countable Type A 𝐴 A equipped with a function | βˆ’ | : A β†’ β„• |-|:A\to\mathbb{N} such that the fibre of | βˆ’ | |-| over every n : β„• : 𝑛 β„• n:\mathbb{N} is Finite.

In terms of dependent type theory, a combinatorial class is a β„• β„• \mathbb{N} -indexed family of finite sets A : β„• β†’ π–₯𝗂𝗇𝖲𝖾𝗍 : 𝐴 β†’ β„• π–₯𝗂𝗇𝖲𝖾𝗍 A:\mathbb{N}\to\mathsf{FinSet} .

Counting sequences

The counting sequence of a combinatorial class is a sequence β„• β†’ β„• β†’ β„• β„• \mathbb{N}\to\mathbb{N} given by Ξ» ⁒ n . | A ⁒ ( n ) | formulae-sequence πœ† 𝑛 𝐴 𝑛 \lambda n.\;|A(n)| .

Examples

Properties

References