(Au+Bnu)v⋅(Cnv+Dnv)u=(Av+Bnv)u⋅(Cnu+Dnu)v⋅superscriptsuperscript𝐴𝑢superscriptsubscript𝐵𝑛𝑢𝑣superscriptsuperscriptsubscript𝐶𝑛𝑣superscriptsubscript𝐷𝑛𝑣𝑢⋅superscriptsuperscript𝐴𝑣superscriptsubscript𝐵𝑛𝑣𝑢superscriptsuperscriptsubscript𝐶𝑛𝑢superscriptsubscript𝐷𝑛𝑢𝑣(A^{u}+B_{n}^{u})^{v}\cdot(C_{n}^{v}+D_{n}^{v})^{u}=(A^{v}+B_{n}^{v})^{u}\cdot% (C_{n}^{u}+D_{n}^{u})^{v}
A𝐴\displaystyle A =y+xabsent𝑦𝑥\displaystyle=y+x Bnsubscript𝐵𝑛\displaystyle B_{n} =∑i=0n−1yn−(i+1)xiabsentsuperscriptsubscript𝑖0𝑛1superscript𝑦𝑛𝑖1superscript𝑥𝑖\displaystyle=\sum_{i=0}^{n-1}y^{n-(i+1)}x^{i} Cnsubscript𝐶𝑛\displaystyle C_{n} =yn+xnabsentsuperscript𝑦𝑛superscript𝑥𝑛\displaystyle=y^{n}+x^{n} Dnsubscript𝐷𝑛\displaystyle D_{n} =∑i=0n−1y2(n−(i+1))x2iabsentsuperscriptsubscript𝑖0𝑛1superscript𝑦2𝑛𝑖1superscript𝑥2𝑖\displaystyle=\sum_{i=0}^{n-1}y^{2(n-(i+1))}x^{2i}