Fibre Bundle

A fibre bundle is a Bundle where every Fibre is Isomorphic in some coherent way to a standard fibre.

More concretely, let p : E B : 𝑝 𝐸 𝐵 p:E\to B be a Bundle in a Category 𝒞 𝒞 \mathcal{C} with a Terminal Object 1 : 𝒞 : 1 𝒞 1:\mathcal{C} . We say that p 𝑝 p is a fibre bundle if for every Global Element b : 𝒞 ( 1 , B ) : 𝑏 𝒞 1 𝐵 b:\mathcal{C}(1,B) , the pullback of p 𝑝 p along b 𝑏 b is isomorphic to F 𝐹 F .

More generally, let \mathcal{E}\to\mathcal{B} be a Cartesian Fibration over a category with a Terminal Object. An object E : B : 𝐸 subscript 𝐵 E:\mathcal{E}_{B} is a fibre bundle with standard fibre F : 1 : 𝐹 subscript 1 F:\mathcal{E}_{1} if for every Global Element b : ( 1 , B ) : 𝑏 1 𝐵 b:\mathcal{B}(1,B) , there is a Cartesian Morphism f b : F b E : subscript 𝑓 𝑏 subscript 𝑏 𝐹 𝐸 f_{b}:{{F}\to_{b}{E}} .

Properties

Questions