Interpolant in a Fibration

Let \mathcal{E}\to\mathcal{B} be a Cartesian Fibration, and let f g = h k 𝑓 𝑔 𝑘 fg=hk be a commuting square in \mathcal{E} , as in the following diagram:

I𝐼{I}J𝐽{J}K𝐾{K}L𝐿{L}k𝑘\scriptstyle{k}g𝑔\scriptstyle{g}h\scriptstyle{h}f𝑓\scriptstyle{f}

Now, let A : J : 𝐴 subscript 𝐽 A:\mathcal{E}_{J} , and B : K : 𝐵 subscript 𝐾 B:\mathcal{E}_{K} , and d : ( g ( A ) , k ( B ) ) : 𝑑 superscript 𝑔 𝐴 superscript 𝑘 𝐵 d:\mathcal{E}(g^{*}(A),k^{*}(B)) be a vertical morphism in I subscript 𝐼 \mathcal{E}_{I} . An interpolant of d 𝑑 d over the square f g = h k 𝑓 𝑔 𝑘 fg=hk consists of:

Such that d = k ( b ) τ g ( a ) 𝑑 superscript 𝑘 𝑏 𝜏 superscript 𝑔 𝑎 d=k^{*}(b)\circ\tau\circ g^{*}(a) , where τ 𝜏 \tau is the canonical iso k h ( X ) g f ( X ) superscript 𝑘 superscript 𝑋 superscript 𝑔 superscript 𝑓 𝑋 k^{*}h^{*}(X)\cong g^{*}f^{*}(X) induced by the square f g = h k 𝑓 𝑔 𝑘 fg=hk .