Continuous Map of Kleene Spaces

Let X , Y 𝑋 𝑌 X,Y be a pair of Kleene Spaces. A function f : X Y : 𝑓 𝑋 𝑌 f:X\to Y is a continuous map if for all x : X : 𝑥 𝑋 x:X , if f ( x ) 𝑓 𝑥 absent f(x)\downarrow , then x 𝑥 absent x\downarrow . In other words, f 𝑓 f reflects definability.