Geometric Morphism

A geometric morphism F : : 𝐹 F:\mathcal{E}\to\mathcal{F} between to Topoi consists of a pair of Adjoint Functors F F does-not-prove superscript 𝐹 subscript 𝐹 F^{*}\dashv F_{*} F : : subscript 𝐹 F_{*}:\mathcal{E}\to\mathcal{F} , F : : superscript 𝐹 F^{*}:\mathcal{F}\to\mathcal{E} such that F superscript 𝐹 F^{*} preserves Finite Limits.

By convention, the functor F superscript 𝐹 F^{*} is called the "inverse image" and F subscript 𝐹 F_{*} th "direct image".

Examples