Composition of Profunctors

Let P : 𝒟 op × Sets : 𝑃 superscript 𝒟 op Sets P:\mathcal{D}^{\mathrm{op}}\times\mathcal{E}\to\mathrm{Sets} , Q : 𝒞 op × 𝒟 Sets : 𝑄 superscript 𝒞 op 𝒟 Sets Q:\mathcal{C}^{\mathrm{op}}\times\mathcal{D}\to\mathrm{Sets} be a pair of Profunctors. Their composite P Q : 𝒞 op × Sets : tensor-product 𝑃 𝑄 superscript 𝒞 op Sets P\otimes Q:\mathcal{C}^{\mathrm{op}}\times\mathcal{E}\to\mathrm{Sets} is a profunctor with

Alternatively, profunctor composition can be written as the Coend

d:𝒟P(c,d)×Q(d,e)superscript:𝑑𝒟𝑃𝑐𝑑𝑄𝑑𝑒\int^{d:\mathcal{D}}P(c,d)\times Q(d,e)

If we view profunctors as Bimodules of categories, then the composition of profunctors is the Tensor Product of Bimodules.