Total Products

Let \mathcal{E}\to\mathcal{B} be a Displayed category with \mathcal{B} Cartesian. We say that \mathcal{E} has total products if the Total Category \int\mathcal{E} is itself Cartesian.

In displayed terms, this means that for a , b : : 𝑎 𝑏 a,b:\mathcal{B} and x : a , y : b : 𝑥 subscript 𝑎 𝑦 : subscript 𝑏 x:\mathcal{E}_{a},y:\mathcal{E}_{b} , we have a product x × y : a × b : 𝑥 𝑦 subscript 𝑎 𝑏 x\times y:\mathcal{E}_{a\times b} where the projections are appropriately displayed over the projections in \mathcal{B} .