OPEN Formalize Borceux Vol. 1

This task tracks our progress on formalizing the Handbook of Categorical Algebra 1.

TODO [#A] Examples 1.2.5 example topology analysis

TODO [#B] Examples 1.2.6 example

TODO [#C] Examples 1.2.7 example

TODO [#B] Examples 1.2.8 example

TODO [#A] Examples 1.3.6 example analysis

TODO [#A] Examples 1.4.3 example ag

TODO [#C] Proposition 1.6.3 proposition

OPEN [#C] Definition 1.7.5 definition

This is preservation/reflection of monos; we just need to update the page!

TODO [#A] Examples 1.7.7 example analysis topology

TODO [#A] Examples 1.8.5 example analysis topology

TODO [#A] Examples 1.9.6 example analysis topology

TODO [#A] Examples 1.10.3 example topology

TODO [#C] Exercises 1.11.2 exercise

TODO [#C] Exercises 1.11.3 exercise

TODO [#C] Exercises 1.11.4 exercise

TODO [#B] Exercises 1.11.7 exercise

TODO [#B] Exercises 1.11.10 exercise

TODO [#C] Exercises 1.11.12 exercise

TODO [#A] Examples 2.1.7 example topology analysis

TODO [#A] Examples 2.2.4 example topology analysis

TODO [#A] Examples 2.4.6 example topology analysis

TODO [#A] Proposition 2.7.1 proposition taboo

TODO [#B] Proposition 2.8.3 proposition

TODO [#B] Definition 2.8.4 definition

TODO [#B] Proposition 2.8.5 proposition

TODO [#A] Example 2.8.6 example analysis topology

TODO [#C] Proposition 2.9.2 proposition

TODO [#B] Proposition 2.9.8 proposition

TODO [#C] Proposition 2.9.9 proposition

TODO [#A] Examples 2.9.10 example topology analysis

TODO [#C] Definition 2.10.1 definition

TODO [#C] Proposition 2.10.2 proposition

TODO [#A] Examples 2.10.3 example fields

TODO [#C] Proposition 2.11.3 proposition

TODO [#C] Proposition 2.11.4 proposition

TODO [#C] Corollary 2.11.5 proposition

TODO [#C] Proposition 2.12.1 proposition

TODO [#C] Examples 2.12.2 borceux 1lab example

TODO [#A] Definition 2.13.1 definition filtered

This is the definition of a filtered category, which really should be κ 𝜅 \kappa filtered.

TODO [#A] Proposition 2.13.2 proposition filtered

TODO [#A] Proposition 2.13.3 proposition filtered

TODO [#A] Theorem 2.13.4 proposition filtered

TODO [#A] Proposition 2.13.5 proposition filtered

TODO [#A] Corollary 2.13.6 proposition filtered

TODO [#A] Proposition 2.13.7 proposition filtered

TODO [#A] Examples 2.13.8 example filtered

TODO [#A] Counterexample 2.13.9 example filtered topology

TODO [#C] Theorem 2.14.2 proposition

TODO [#C] Corollary 2.15.3 proposition

TODO [#C] Corollary 2.15.4 proposition filtered

TODO [#C] Proposition 2.15.5 proposition

TODO [#C] Examples 2.15.7 proposition

TODO [#C] Proposition 2.16.1 proposition

TODO [#C] Corollary 2.16.2 proposition

TODO [#C] Proposition 2.16.3 proposition

TODO [#C] Exercise 2.17.1 exercise

TODO [#C] Exercise 2.17.2 exercise

TODO [#C] Exercise 2.17.4 exercise

TODO [#C] Exercise 2.17.5 exercise

TODO [#C] Exercise 2.17.6 exercise

TODO [#C] Exercise 2.17.7 exercise

TODO [#C] Exercise 2.17.9 exercise

TODO [#C] Exercise 2.17.10 exercise

TODO [#C] Proposition 3.2.3 proposition

TODO [#C] Proposition 3.2.4 proposition

TODO [#C] Proposition 3.3.1 borceux 1lab proposition

TODO [#B] Theorem 3.3.4 proposition

TODO [#C] Corollary 3.3.5 proposition

TODO [#C] Corollary 3.3.6 proposition

TODO [#C] Corollary 3.3.7 proposition

TODO [#C] Corollary 3.3.8 proposition

TODO [#A] Examples 3.3.9 example topology analysis

TODO [#C] Proposition 3.4.2 proposition

TODO [#C] Proposition 3.4.3 proposition

TODO [#C] Proposition 3.4.5 proposition

TODO [#C] Definition 3.5.1 definition

TODO [#C] Proposition 3.5.3 proposition

TODO [#C] Definition 3.5.5 definition

TODO [#C] Definition 3.5.6 definition

TODO [#A] Proposition 3.5.7 proposition

TODO [#C] Proposition 3.8.1 borceux 1lab proposition

TODO [#C] Exercise 3.9.1 exercise

TODO [#C] Exercise 3.9.2 exercise

TODO [#C] Exercise 3.9.3 exercise

TODO [#C] Exercise 3.9.4 exercise

TODO [#C] Exercise 3.9.5 exercise

TODO [#C] Exercise 3.9.6 exercise

TODO [#C] Exercise 3.9.7 exercise

TODO [#C] Definition 4.1.1 borceux 1lab definition

TODO [#B] Definition 4.1.2 definition

The definition in Borceux uses is the set-theoretic definition of a well-powered category, which does not work very nicely in type-theoretic settings.

TODO [#C] Definition 4.2.1 borceux 1lab

TODO [#C] Proposition 4.5.15 proposition

TODO Proposition 4.7.1 proposition

TODO Proposition 4.7.2 proposition

TODO Proposition 4.7.3 proposition

TODO Proposition 4.7.4 proposition

TODO Proposition 4.7.5 proposition

TODO Proposition 4.7.6 proposition analysis

TODO Proposition 4.7.7 proposition topology

TODO Proposition 4.7.8 proposition topology