Present Cisinski to reading group <2024-09-22 Sun 17:00-19:00>

I volunteered to present a chapter from Cisinski. We were working through 7.5, which covers Derived Functors.

DONE [#B] Prepare for reading group

Lemma 7.5.15

For any ∞-Category with weak equivalences and fibrations, the canonical functor h o ( L ( C f ) ) h o ( L ( C ) ) 𝑜 𝐿 subscript 𝐶 𝑓 𝑜 𝐿 𝐶 ho(L(C_{f}))\to ho(L(C)) is an equivalence of categories.

Here, h o ( C ) 𝑜 𝐶 ho(C) denotes the Homotopy category of C 𝐶 C , L ( C ) 𝐿 𝐶 L(C) denotes the Localization of C 𝐶 C , and C f subscript 𝐶 𝑓 C_{f} denotes the full subcategory of Fibrant objects.

Note that this is really a defininition and two theorems in one:

  1. Proof

    We start by choosing a cleavage, which consists of the following data:

    1. For each object x : C : 𝑥 𝐶 x:C , a choice of fibrant object R ( x ) 𝑅 𝑥 R(x) and weak equivalence j x : x R ( x ) : subscript 𝑗 𝑥 𝑥 𝑅 𝑥 j_{x}:x\to R(x) . (If x 𝑥 x is already fibrant, then we choose R ( x ) = x 𝑅 𝑥 𝑥 R(x)=x and j x = 1 x subscript 𝑗 𝑥 subscript 1 𝑥 j_{x}=1_{x} ).

    2. For each map u : x y : 𝑢 𝑥 𝑦 u:x\to y a choice of a (potentially non-commutative) diagram

      x𝑥{x}y𝑦{y}R(x)𝑅𝑥{R(x)}S(u)𝑆𝑢{S(u)}R(y)𝑅𝑦{R(y)}jxsubscript𝑗𝑥\scriptstyle{j_{x}}σ(u)𝜎𝑢\scriptstyle{\sigma(u)}u𝑢\scriptstyle{u}jysubscript𝑗𝑦\scriptstyle{j_{y}}q(u)𝑞𝑢\scriptstyle{q(u)}p(u)𝑝𝑢\scriptstyle{p(u)}

      where σ ( u ) 𝜎 𝑢 \sigma(u) is a weak equivalence, p ( u ) 𝑝 𝑢 p(u) and q ( u ) 𝑞 𝑢 q(u) are fibrations, such that the image of the diagram in h o ( C ) 𝑜 𝐶 ho(C) is commutative. (Whenever u = 1 x 𝑢 subscript 1 𝑥 u=1_{x} , we choose S ( 1 x ) = x 𝑆 subscript 1 𝑥 𝑥 S(1_{x})=x ), and p ( u ) = q ( u ) = 1 R ( x ) 𝑝 𝑢 𝑞 𝑢 subscript 1 𝑅 𝑥 p(u)=q(u)=1_{R(x)} .

      What does this data give us? The name suggests that this is like a 1-categorical Cleavage, which gives us a choice of cartesian lifts for a fibration. This in turn lets us classify fibrations as Pseudofunctors B Cat 𝐵 Cat B\to\mathrm{Cat} . Here, it seems like we are instead taking a choice of fibrant replacements (the weak equivalences j x subscript 𝑗 𝑥 j_{x} ), along with choices of "weak" factorizations of arbitrary maps u : x y : 𝑢 𝑥 𝑦 u:x\to y into a weak equivalence σ ( u ) 𝜎 𝑢 \sigma(u) followed by a fibration p ( u ) 𝑝 𝑢 p(u) . Note that the triangle

      x𝑥{x}R(x)𝑅𝑥{R(x)}S(u)𝑆𝑢{S(u)}jxsubscript𝑗𝑥\scriptstyle{j_{x}}σ(u)𝜎𝑢\scriptstyle{\sigma(u)}q(u)𝑞𝑢\scriptstyle{q(u)}

      seems to mostly exist as a coherence thing. Moreover, note that q ( u ) 𝑞 𝑢 q(u) must be a trivial fibration by 2-Out-Of-3.

      Useful example to think about is iso-comma categories as doubly displayed widgets; these are isofibrations in both directions, so they fit the criteria we need.

    Existence of cleavages: We can obtain our choice of fibrant replacements by factoring (one of) the maps x 1 𝑥 1 x\to 1 into the chosen final object of C 𝐶 C into x R ( x ) 1 𝑥 𝑅 𝑥 1 x\to R(x)\to 1 .

    The second property is a bit harder. Given a non-identity map u : x y : 𝑢 𝑥 𝑦 u:x\to y , there is a canonical map j x , j y u : x R ( x ) × R ( y ) : subscript 𝑗 𝑥 subscript 𝑗 𝑦 𝑢 𝑥 𝑅 𝑥 𝑅 𝑦 \langle j_{x},j_{y}u\rangle:x\to R(x)\times R(y) that we can factor as a weak equivalence σ ( u ) : x S ( u ) : 𝜎 𝑢 𝑥 𝑆 𝑢 \sigma(u):x\to S(u) followed by a fibration π ( u ) : S ( u ) R ( x ) × R ( y ) : 𝜋 𝑢 𝑆 𝑢 𝑅 𝑥 𝑅 𝑦 \pi(u):S(u)\to R(x)\times R(y) . The maps p ( u ) 𝑝 𝑢 p(u) and q ( u ) 𝑞 𝑢 q(u) are obtained by postcomposing π ( u ) 𝜋 𝑢 \pi(u) with the projections out of R ( x ) × R ( y ) 𝑅 𝑥 𝑅 𝑦 R(x)\times R(y) .

    The actual proof: We need to promote a cleavage R 𝑅 R on C 𝐶 C to a functor R : h o ( C ) \5 o h o ( L ( C f ) ) : 𝑅 𝑜 𝐶 \5 𝑜 𝑜 𝐿 subscript 𝐶 𝑓 R:ho(C)\5oho(L(C_{f})) . Given a map u : x y : 𝑢 𝑥 𝑦 u:x\to y , we define R ( u ) = p ( u ) q 1 ( u ) 𝑅 𝑢 𝑝 𝑢 superscript 𝑞 1 𝑢 R(u)=p(u)q^{-1}(u) . By definition, we have R ( 1 x ) = 1 R ( x ) 𝑅 subscript 1 𝑥 subscript 1 𝑅 𝑥 R(1_{x})=1_{R(x)} . Let u : x y : 𝑢 𝑥 𝑦 u:x\to y and v : y z : 𝑣 𝑦 𝑧 v:y\to z be a pair of maps. We start by forming a pullback in C 𝐶 C .

    T(v,u)𝑇𝑣𝑢{T(v,u)}S(u)𝑆𝑢{S(u)}S(v)𝑆𝑣{S(v)}R(y)𝑅𝑦{R(y)}p(u)𝑝𝑢\scriptstyle{p(u)}q(v)𝑞𝑣\scriptstyle{q(v)}

    The following commutative square gives us a map f : x T ( v , u ) : 𝑓 𝑥 𝑇 𝑣 𝑢 f:x\to T(v,u) .

    x𝑥{x}y𝑦{y}S(v)𝑆𝑣{S(v)}S(u)𝑆𝑢{S(u)}R(y)𝑅𝑦{R(y)}u𝑢\scriptstyle{u}σ(u)𝜎𝑢\scriptstyle{\sigma(u)}σ(v)𝜎𝑣\scriptstyle{\sigma(v)}q(v)𝑞𝑣\scriptstyle{q(v)}p(u)𝑝𝑢\scriptstyle{p(u)}

    Next, we choose a composite w : x z : 𝑤 𝑥 𝑧 w:x\to z of u 𝑢 u and v 𝑣 v . This gives the following commutative diagram:

    S(vu)𝑆𝑣𝑢{{S(vu)}}x𝑥{x}T(v,u)𝑇𝑣𝑢{{T(v,u)}}S(u)𝑆𝑢{{S(u)}}S(v)𝑆𝑣{{S(v)}}R(x)𝑅𝑥{{R(x)}}R(y)𝑅𝑦{{R(y)}}R(z)𝑅𝑧{{R(z)}}p(vu)𝑝𝑣𝑢\scriptstyle{p(vu)}q(vu)𝑞𝑣𝑢\scriptstyle{q(vu)}σ(vu)𝜎𝑣𝑢\scriptstyle{\sigma(vu)}f𝑓\scriptstyle{f}π1subscript𝜋1\scriptstyle{\pi_{1}}π2subscript𝜋2\scriptstyle{\pi_{2}}\scriptstyle{\lrcorner}p(u)𝑝𝑢\scriptstyle{p(u)}q(u)𝑞𝑢\scriptstyle{q(u)}p(v)𝑝𝑣\scriptstyle{p(v)}q(v)𝑞𝑣\scriptstyle{q(v)}

    This is a bit easier if you think about this as composition of spans, followed by finding an intermediate.

    We can then compose the functor R : h o ( C ) h o ( L ( C f ) ) : 𝑅 𝑜 𝐶 𝑜 𝐿 subscript 𝐶 𝑓 R:ho(C)\to ho(L(C_{f})) with the canonical functor h o ( ι ) : h o ( C f ) h o ( C ) : 𝑜 𝜄 𝑜 subscript 𝐶 𝑓 𝑜 𝐶 ho(\iota):ho(C_{f})\to ho(C) , which is equal to the canonical functor h o ( γ f ) : h o ( C f ) h o ( L ( C f ) ) : 𝑜 subscript 𝛾 𝑓 𝑜 subscript 𝐶 𝑓 𝑜 𝐿 subscript 𝐶 𝑓 ho(\gamma_{f}):ho(C_{f})\to ho(L(C_{f})) .

    Then, by construction, for any map u : x y : 𝑢 𝑥 𝑦 u:x\to y in C 𝐶 C , the square

    x𝑥{x}y𝑦{y}R(x)𝑅𝑥{R(x)}R(y)𝑅𝑦{R(y)}u𝑢\scriptstyle{u}jysubscript𝑗𝑦\scriptstyle{j_{y}}jysubscript𝑗𝑦\scriptstyle{j_{y}}p(u)q(u)1𝑝𝑢𝑞superscript𝑢1\scriptstyle{p(u)q(u)^{-1}}

    commutes in h o ( L ( C ) ) 𝑜 𝐿 𝐶 ho(L(C)) . This gives us an invertible natural transformation j : h o ( γ ) h o ( ι ) R : 𝑗 𝑜 𝛾 𝑜 𝜄 𝑅 j:ho(\gamma)\to ho(\iota)\circ R , so the functor h o ( L ( C f ) ) h o ( L ( C ) ) 𝑜 𝐿 subscript 𝐶 𝑓 𝑜 𝐿 𝐶 ho(L(C_{f}))\to ho(L(C)) induced by ι 𝜄 \iota is an equivalence of categories.

Proposition 7.5.16

Let x 𝑥 x be a Fibrant object in a ∞-Category with weak equivalences and fibrations C 𝐶 C . The induced functor C f / γ f ( x ) C / γ ( y ) subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 𝐶 𝛾 𝑦 C_{f}/\gamma_{f}(x)\to C/\gamma(y) is final.

  1. Motivation

    Taking colimits over slices like C / F ( x ) 𝐶 𝐹 𝑥 C/F(x) is a classic tool of 1-category theory, and final functors let us compute colimits by restricting along them (See 6.4.5 for the higher case of this). So this theorem will let us do that same "final replacement" trick we do when we compute colimits: in particular, when computing these sorts of slice-shaped colimits, we can restrict our attention to only the fibrant objects.

  2. Proof

    Recall that

    Cf/γf(x)=L(Cf)/γf(x)×L(Cf)Cfsubscript𝐶𝑓subscript𝛾𝑓𝑥subscript𝐿subscript𝐶𝑓𝐿subscript𝐶𝑓subscript𝛾𝑓𝑥subscript𝐶𝑓C_{f}/\gamma_{f}(x)=L(C_{f})/\gamma_{f}(x)\times_{L(C_{f})}C_{f}

    and

    C/γ(x)=L(C)/γ(x)×L(C)C𝐶𝛾𝑥subscript𝐿𝐶𝐿𝐶𝛾𝑥𝐶C/\gamma(x)=L(C)/\gamma(x)\times_{L(C)}C

    Intuition here is that the following pullback square gives us the data of γ ( c ) γ ( x ) 𝛾 𝑐 𝛾 𝑥 \gamma(c)\to\gamma(x) , as the object in L ( C ) 𝐿 𝐶 L(C) is in the image of γ 𝛾 \gamma .

    L(C)/γ(x)×L(C)Csubscript𝐿𝐶𝐿𝐶𝛾𝑥𝐶{L(C)/\gamma(x)\times_{L(C)}C}C𝐶{C}L(C)/γ(x)𝐿𝐶𝛾𝑥{L(C)/\gamma(x)}L(C)𝐿𝐶{L(C)}π1subscript𝜋1\scriptstyle{\pi_{1}}π2subscript𝜋2\scriptstyle{\pi_{2}}γ𝛾\scriptstyle{\gamma}π1subscript𝜋1\scriptstyle{\pi_{1}}

    Why didn't he just write γ / γ ( x ) 𝛾 𝛾 𝑥 \gamma/\gamma(x) ?

    Moreover, the comparison functor is induced by the functor ι ¯ : L ( C f ) L ( C ) : ¯ 𝜄 𝐿 subscript 𝐶 𝑓 𝐿 𝐶 \overline{\iota}:L(C_{f})\to L(C) . An object ξ : C / γ ( x ) : 𝜉 𝐶 𝛾 𝑥 \xi:C/\gamma(x) is determined by a pair ( c , u ) 𝑐 𝑢 (c,u) where c : C : 𝑐 𝐶 c:C and u : γ ( c ) γ ( x ) : 𝑢 𝛾 𝑐 𝛾 𝑥 u:\gamma(c)\to\gamma(x) is a map in L ( c ) 𝐿 𝑐 L(c) .

    We need to show that the coslice ξ \ ( C f / γ f ( x ) ) \ 𝜉 subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 \xi\backslash(C_{f}/\gamma_{f}(x)) is weakly contractible. By lemma 4.3.15, it suffices to consider a functor of the form F : E ξ \ ( C f / γ f ( x ) ) : 𝐹 𝐸 \ 𝜉 subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 F:E\to\xi\backslash(C_{f}/\gamma_{f}(x)) where E 𝐸 E is a nerve of a finite partially ordered set, and to prove that F 𝐹 F is Δ 1 superscript Δ 1 \Delta^{1} homotopic to a constant functor.

    Let X 𝑋 X be a simplicial set such that for any finite partially ordered set E 𝐸 E , any map N ( E ) X 𝑁 𝐸 𝑋 N(E)\to X is Δ 1 superscript Δ 1 \Delta^{1} homotopic to a constant map. Then the map X Δ 0 𝑋 superscript Δ 0 X\to\Delta^{0} is a weak homotopy equivalence.

    If E 𝐸 E is empty, then, then it suffices to show that ξ \ ( C f / γ f ( x ) ) \ 𝜉 subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 \xi\backslash(C_{f}/\gamma_{f}(x)) is non-empty. Cisinski says to pick a weak equivalence p : c d : 𝑝 𝑐 𝑑 p:c\to d with d 𝑑 d fibrant, but we may as well just use j c : c R ( c ) : subscript 𝑗 𝑐 𝑐 𝑅 𝑐 j_{c}:c\to R(c) ? Either way, we can use our previous lemma to turn the morphism u 𝑢 u from ξ 𝜉 \xi into a unique map δ : γ f ( d ) γ f ( x ) : 𝛿 subscript 𝛾 𝑓 𝑑 subscript 𝛾 𝑓 𝑥 \delta:\gamma_{f}(d)\to\gamma_{f}(x) in h o ( L ( C f ) ) 𝑜 𝐿 subscript 𝐶 𝑓 ho(L(C_{f})) such that ι ¯ ( δ ) γ ( p ) = u ¯ 𝜄 𝛿 𝛾 𝑝 𝑢 \overline{\iota}(\delta)\gamma(p)=u .

    Now for the case when E 𝐸 E is non-empty. First, observe that a functor F 𝐹 F as above is essentially determined by a functor Φ : E C f : Φ 𝐸 subscript 𝐶 𝑓 \Phi:E\to C_{f} along with a map φ : γ f ( Φ ) γ f ( x ) : 𝜑 subscript 𝛾 𝑓 Φ subscript 𝛾 𝑓 𝑥 \varphi:\gamma_{f}(\Phi)\to\gamma_{f}(x) and a map ψ : c Φ : 𝜓 𝑐 Φ \psi:c\to\Phi such that the diagram

    γcsubscript𝛾𝑐{\gamma_{c}}γ(x)𝛾𝑥{\gamma(x)}γ(Φ)𝛾Φ{\gamma(\Phi)}γ(ψ)𝛾𝜓\scriptstyle{\gamma(\psi)}u𝑢\scriptstyle{u}ι¯(φ)¯𝜄𝜑\scriptstyle{\overline{\iota}(\varphi)}

    commutes in Hom ¯ ( E , L ( C ) ) ¯ Hom 𝐸 𝐿 𝐶 \underline{\mathrm{Hom}}(E,L(C)) . Proposition 7.4.19 lets us perform a Reedy fibrant replacement to get a fibrewise equivalence w : Φ Φ 0 : 𝑤 Φ subscript Φ 0 w:\Phi\to\Phi_{0} such that Φ 0 subscript Φ 0 \Phi_{0} is Reedy fibrant.

    Let u : F G : 𝑢 𝐹 𝐺 u:F\to G be a mrophism of C 𝐶 C valued presheaves on a finite direct category. There exists a Reedy fibration p : H G : 𝑝 𝐻 𝐺 p:H\to G and a fibrewise equivalence w : F H : 𝑤 𝐹 𝐻 w:F\to H such that u 𝑢 u is a composite of w 𝑤 w and p 𝑝 p .

    Since γ f ( w ) : γ f ( Φ ) γ f ( Φ 0 ) : subscript 𝛾 𝑓 𝑤 subscript 𝛾 𝑓 Φ subscript 𝛾 𝑓 subscript Φ 0 \gamma_{f}(w):\gamma_{f}(\Phi)\to\gamma_{f}(\Phi_{0}) is invertible, one can find a map φ 0 : γ f ( Φ 0 ) γ f ( x ) : subscript 𝜑 0 subscript 𝛾 𝑓 subscript Φ 0 subscript 𝛾 𝑓 𝑥 \varphi_{0}:\gamma_{f}(\Phi_{0})\to\gamma_{f}(x) such that φ 𝜑 \varphi is a composition of φ 0 subscript 𝜑 0 \varphi_{0} and γ f ( w ) subscript 𝛾 𝑓 𝑤 \gamma_{f}(w) . Moreover, we can compose w 𝑤 w with ψ 𝜓 \psi to get a map ψ 0 : c Φ 0 : subscript 𝜓 0 𝑐 subscript Φ 0 \psi_{0}:c\to\Phi_{0} . These 3 pieces of data give us a functor F 0 : E ξ \ ( C f / γ f ( x ) ) : subscript 𝐹 0 𝐸 \ 𝜉 subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 F_{0}:E\to\xi\backslash(C_{f}/\gamma_{f}(x)) , and w 𝑤 w extends to a natural transformation F F 0 𝐹 subscript 𝐹 0 F\to F_{0} .

    This process lets us replace F 𝐹 F with some F 0 subscript 𝐹 0 F_{0} whose underlying functor Φ 0 subscript Φ 0 \Phi_{0} is Reedy fibrant. We then invoke proposition 7.4.8 to show that the limit of Φ 0 subscript Φ 0 \Phi_{0} exists and is fibrant in C 𝐶 C . Moreover, the map ψ 0 subscript 𝜓 0 \psi_{0} is a cone for Φ 0 subscript Φ 0 \Phi_{0} , so we get a map π : c lim Φ 0 : 𝜋 𝑐 lim subscript Φ 0 \pi:c\to\mathrm{lim}\ \Phi_{0} .

    As lim Φ 0 lim subscript Φ 0 \mathrm{lim}\ \Phi_{0} is fibrant in C 𝐶 C , we can factor π 𝜋 \pi into a weak equivalence p : c d : 𝑝 𝑐 𝑑 p:c\to d and a fibration q : d lim Φ 0 : 𝑞 𝑑 lim subscript Φ 0 q:d\to\mathrm{lim}\ \Phi_{0} . The canonical morphism v : lim Φ 0 Φ 0 : 𝑣 lim subscript Φ 0 subscript Φ 0 v:\mathrm{lim}\ \Phi_{0}\to\Phi_{0} along with a choice of composition with φ 0 subscript 𝜑 0 \varphi_{0} defines a map λ : γ f ( lim Φ 0 ) γ f ( x ) : 𝜆 subscript 𝛾 𝑓 lim subscript Φ 0 subscript 𝛾 𝑓 𝑥 \lambda:\gamma_{f}(\mathrm{lim}\ \Phi_{0})\to\gamma_{f}(x) . We can then compose q 𝑞 q and λ 𝜆 \lambda to get a morphism δ : γ f ( d ) γ f ( x ) : 𝛿 subscript 𝛾 𝑓 𝑑 subscript 𝛾 𝑓 𝑥 \delta:\gamma_{f}(d)\to\gamma_{f}(x) between constant functors.

    Now, let e 𝑒 e be an object, and δ e : γ f ( d ) γ f ( x ) : subscript 𝛿 𝑒 subscript 𝛾 𝑓 𝑑 subscript 𝛾 𝑓 𝑥 \delta_{e}:\gamma_{f}(d)\to\gamma_{f}(x) be a component of the aforementioned natural transformation. As u 𝑢 u (which, recall, came from ξ 𝜉 \xi ) is a composition of ι ¯ ( δ e ) ¯ 𝜄 subscript 𝛿 𝑒 \overline{\iota}(\delta_{e}) with the inverse of γ ( p ) 𝛾 𝑝 \gamma(p) , the triple ( d , p , δ e ) 𝑑 𝑝 subscript 𝛿 𝑒 (d,p,\delta_{e}) defines a constant functor E ξ \ ( C f / γ f ( x ) ) 𝐸 \ 𝜉 subscript 𝐶 𝑓 subscript 𝛾 𝑓 𝑥 E\to\xi\backslash(C_{f}/\gamma_{f}(x)) . A short diagram chose shows that any composition of v 𝑣 v and q 𝑞 q defines a natural transformation from ( d , p , δ e ) 𝑑 𝑝 subscript 𝛿 𝑒 (d,p,\delta_{e}) to F 𝐹 F .

Corollary 7.5.17

Let C 𝐶 C be a 𝒰 𝒰 \mathcal{U} small ∞-Category with weak equivalences and fibrations. For any infinity category D 𝐷 D with 𝒰 𝒰 \mathcal{U} small colimits and any functor F : C D : 𝐹 𝐶 𝐷 F:C\to D , the commutative square 7.5.11 induces an invertible map ( γ f ) ! ι ( F ) ( ι ¯ ) γ ! ( F ) similar-to-or-equals subscript subscript 𝛾 𝑓 superscript 𝜄 𝐹 superscript ¯ 𝜄 subscript 𝛾 𝐹 (\gamma_{f})_{!}\iota^{*}(F)\simeq(\overline{\iota})^{*}\gamma_{!}(F)

Cfsubscript𝐶𝑓{C_{f}}C𝐶{C}L(Cf)𝐿subscript𝐶𝑓{L(C_{f})}L(C)𝐿𝐶{L(C)}γfsubscript𝛾𝑓\scriptstyle{\gamma_{f}}ι𝜄\scriptstyle{\iota}γ𝛾\scriptstyle{\gamma}ι¯¯𝜄\scriptstyle{\overline{\iota}}

Recall that ι : [ C , D ] [ C f , D ] : superscript 𝜄 𝐶 𝐷 subscript 𝐶 𝑓 𝐷 \iota^{*}:[C,D]\to[C_{f},D] is precomposition with ι : C f C : 𝜄 subscript 𝐶 𝑓 𝐶 \iota:C_{f}\to C , and γ ! : [ C , D ] [ L ( C ) , D ] : subscript 𝛾 𝐶 𝐷 𝐿 𝐶 𝐷 \gamma_{!}:[C,D]\to[L(C),D] is the extension of a functor to the localization that we compute by taking a colimit.

  1. Motivation

    This is sort of a nerve-and-realization result.

  2. Proof

    We already have a canonical map ( γ f ) ! ι ( F ) ( ι ¯ ) γ ! ( F ) subscript subscript 𝛾 𝑓 superscript 𝜄 𝐹 superscript ¯ 𝜄 subscript 𝛾 𝐹 (\gamma_{f})_{!}\iota^{*}(F)\to(\overline{\iota})^{*}\gamma_{!}(F) that comes from the definition of ( γ f ) ! ( F ι ) subscript subscript 𝛾 𝑓 𝐹 𝜄 (\gamma_{f})_{!}(F\circ\iota) as a colimit. If we apply Proposition 6.4.9 twice to unfold the definition of ! ! , we see that this is equivalent to a map between colimits being invertible. The previous result lets us do a "final replacement" of the side where we compute the colimit over γ 𝛾 \gamma , so this map must be invertible.